Solving the backward heat equation on the unit sphere
DOI:
https://doi.org/10.21914/anziamj.v56i0.9346Keywords:
backward heat equation, unit sphere, radial basis functionAbstract
We consider an inverse problem for the heat equation on the unit sphere in which the final (current) temperature on the sphere is given, and the task is to determine the initial temperature. The problem is ill-posed in the sense of Hadamard; hence, a regularization technique is applied. We then use a Galerkin method with spherical radial basis functions to solve the regularized problem. The problem may have potential applications in atmospheric modelling, when current temperature data is used to calculate a past global temperature. References- J. Atmadja and A. C. Bagtzoglou. Pollution source identification in heterogeneous porous media. Water Resour. Res., 37:2113–2125, 2001. doi:10.1029/2001wr000223
- D. Chen, V. A. Menegatto and X. Sun. A necessary and sufficient condition for strictly positive definite functions on spheres. P. Am. Math. Soc., 131:2733–2740, 2003. doi:10.1090/S0002-9939-03-06730-3
- G. W. Clark and S. F. Oppenheimer. Quasireversibility methods for non-well-posed problems. Electron. J. Diff. Eq., 1994(8):1–9, 1994. http://ejde.math.unt.edu
- I. G. Enting. Inverse problems in atmospheric constituent transport. Cambridge University Press, Cambridge, 2002. doi:10.1017/cbo9780511535741
- J. Hadamard. Sur les problemes aux derivees partielles et leur signification physique. Princeton Uni. Bull., 13:49–52, 1902.
- L. S. G. Kovasznay and H. M. Joseph. Image processing. Proc. IRE, 43:560–570, 1955. doi:10.1109/jrproc.1955.278100
- C. Muller. Spherical Harmonics, volume 17 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1966. doi:10.1007/bfb0094775
- E. B. Saff and A. B. J. Kuijlaars. Distributing many points on a sphere. Math. Intelligencer, 19:5–11, 1997. doi:10.1007/BF03024331
- I. J. Schoenberg. Positive definite function on spheres. Duke Math. J., 9:96–108, 1942. doi:10.1215/S0012-7094-42-00908-6
- H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, 2005. http://www.cambridge.org/au/academic/subjects/mathematics/numerical-analysis/scattered-data-approximation
Published
2016-01-19
Issue
Section
Proceedings Computational Techniques and Applications Conference