Simultaneously dynamical Diophantine approximation in beta expansions

Authors

  • W. Wang Huazhong University of Science and Technology, Wuhan, China
  • L. Li Department of Mathematics, West Anhui University, Lu’an, Anhui 237012, China

Keywords:

Beta-expansions, Diophantine approximation, Hausdorff dimension

Abstract

Let $\beta>1$ be a real number and define the $\beta$-transformation on $[0,1]$ by $T_\beta:x\mapsto\beta x({\rm{mod}}\ 1).$ Let $f:[0,1]\rightarrow [0,1]$ and $g:[0,1]\rightarrow [0,1]$ be two Lipschitz functions. The main result of the paper is the Hausdorff dimension of the set W(f,g,τ1,τ2)={(x,y)[0,1]2:|Tnβxf(x)|<βnτ1(x),|Tnβyg(y)|<βnτ2(y)~~~for infinitely many n\N}, where $\tau_1,\tau_2$ are two positive continuous functions with $\tau_1(x)\leq \tau_2(y)$ for all $x,y\in [0,1]$.

Published

2020-07-31

Issue

Section

Articles