On the Diophantine equation $(8n)^{x}+(15n)^{y}=(17n)^{z}$

Authors

  • ZhiJuan Yang
  • Min Tang

Keywords:

Je\'{s}manowicz' conjecture, Diophantine equation

Abstract

Let $a,b,c$ be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}.$ In 1956, Je\'{s}manowicz conjectured that for any given positive integer $n$ the only solution of $(an)^{x}+(bn)^{y}=(cn)^{z}$ in positive integers is $(x,y,z)=(2,2,2)$. In this paper, we show that $(8n)^{x}+(15n)^{y}=(17n)^{z}$ has no solution other than $(x,y,z)=(2,2,2)$ in positive integers. DOI: 10.1017/S000497271100342X

Published

2012-08-27

Issue

Section

Articles