Unique representation bi-basis for the integers

Authors

  • R. Xiong
  • M. Tang

Keywords:

bi-basis, representation function

Abstract

For nZ and AZ, let rA(n)=#{(a1,a2)A2:n=a1+a2,a1a2} and δA(n)=#{(a1,a2)A2:n=a1a2}. We call A a unique representation bi-basis if rA(n)=1 for all nZ and δA(n)=1 for all nZ{0}. In this paper, we construct a unique representation bi-basis of Z whose growth is logarithmic. DOI: 10.1017/S0004972713000762

Published

2014-03-25

Issue

Section

Articles