A new MITC finite element method for Reissner--Mindlin plate problem based on a biorthogonal system

Authors

  • Bishnu Prasad Lamichhane University of Newcastle
  • Michael H. Meylan University of Newcastle

DOI:

https://doi.org/10.21914/anziamj.v58i0.11754

Keywords:

Reissner--Mindlin plate, finite element, Lagrange multiplier, biorthogonal system, a priori error estimates

Abstract

We present a new MITC (Mixed Interpolated Tensorial Components) finite element method for Reissner--Mindlin plate equations. The new finite element method uses a biorthogonal system to construct the reduction operator for the MITC element. Numerical results are shown to demonstrate the performance of the approach. References
  • D. Arnold and F. Brezzi. Some new elements for the Reissner–Mindlin plate model. In J. L. Lions, C. Baiocchi and E. Magenes editors. Boundary Value Problems for Partial Differential Equations and Applications: Dedicated to E. Magenes. Masson, Paris, 1993, pp. 287–292. http://umn.edu/ arnold/papers/rmelts.pdf
  • D. Arnold, F. Brezzi and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21:337–344, 1984. doi:10.1007/BF02576171
  • D. Arnold and R. Falk. A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM Journal on Numerical Analysis, 26:1276–1290, 1989. doi:10.1137/0726074
  • D. Arnold and R. Falk. Analysis of a linear-linear finite element for the Reissner–Mindlin plate model. Mathematical Models and Methods in Applied Science, 7:217–238, 1997. doi:10.1142/S0218202597000141
  • D. Boffi, F. Brezzi and M. Fortin. Mixed Finite Element Methods and Applications. Springer–Verlag, Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-36519-5
  • D. Braess. Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics. 2nd edition, Cambridge Univ. Press, Cambridge, 2001. doi:10.1017/CBO9780511618635
  • S. Brenner. Multigrid methods for parameter dependent problems. ESAIM: Mathematical Modelling and Numerical Analysis, 30:265–297, 1996. doi:10.1051/m2an/1996300302651
  • S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. Springer–Verlag, New York, 1994. doi:10.1007/978-0-387-75934-0
  • C. Chinosi, C. Lovadina and L. Marini. Nonconforming locking-free finite elements for Reissner–Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 195:3448–3460, 2006. doi:10.1016/j.cma.2005.06.025
  • L. B. da Veiga, C. Chinosi, C. Lovadina and L. F. Pavarino. Robust BDDC preconditioners for Reissner–Mindlin plate bending problems and MITC elements. SIAM Journal on Numerical Analysis, 47(6):4214–4238, 2010. doi:10.1137/080717729
  • E. Dvorkin and K. Bathe. A continuum mechanics based four-node shell element for general nonlinear analysis. Engineering Computations, 1:77–88, 1984. doi:10.1108/eb023562
  • R. Falk and T. Tu. Locking-free finite elements for the Reissner-Mindlin plate. Mathematics of Computation, 69:911–928. doi:10.1090/S0025-5718-99-01165-5
  • C. Kim, R. Lazarov, J. Pasciak and P. Vassilevski. Multiplier spaces for the mortar finite element method in three dimensions. SIAM Journal on Numerical Analysis, 39:519–538, 2001. doi:10.1137/S0036142900367065
  • B. Lamichhane. Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications. PhD thesis, University of Stuttgart, 2006. doi:10.18419/opus-4770
  • B. Lamichhane. Two simple finite element methods for Reissner–Mindlin plates with clamped boundary condition. Applied Numerical Mathematics, 72:91–98, 2013. doi:10.1016/j.apnum.2013.04.005
  • C. Lovadina. A new class of mixed finite element methods for Reissner-Mindlin plates. SIAM Journal on Numerical Analysis, 33:2456–2467, 1996. doi:10.1137/S0036142994265061
  • C. Lovadina. A low-order nonconforming finite element for Reissner–Mindlin plates. SIAM Journal on Numerical Analysis, 42:2688–2705, 2005. doi:10.1137/040603474
  • M. Lyly, J. Niiranen and R. Stenberg. A refined error analysis of MITC plate elements. Mathematical Models and Methods in Applied Sciences, 16:967–977, 2006. doi:10.1142/S021820250600142X
  • D. Mijuca. On hexahedral finite element HC8/27 in elasticity. Computational Mechanics, 33:466–480, 2004. doi:10.1007/s00466-003-0546-9
  • S. Timoshenko and J. Goodier. Theory of Elasticity. 3rd edition, McGraw-Hill, New York, 1970. doi:10.1017/S036839310012471X

Author Biography

Michael H. Meylan, University of Newcastle

Associate Professor

Published

2017-07-16

Issue

Section

Proceedings Computational Techniques and Applications Conference