A rational approximation to the evolution of a free surface during fluid withdrawal through a point sink

Graeme Charles Hocking, Timothy Stokes, Lawrence Forbes

Abstract


The time varying flow in which fluid is withdrawn from a reservoir through a point sink of variable strength beneath a free surface is considered. Asymptotic techniques are used to derive an approximate solution to the flow that is valid at intermediate times, giving a simple rational approximation to track changes in the free surface for any temporal variations in the sink strength. Comparisons with numerical simulations are given, showing that the approximation has wide applicability.

References
  • M. Abramovitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972
  • A. Craya, 1949, Theoretical research on the flow of nonhomogeneous fluids, La Houille Blanche, 4, 44--55.
  • W. R. Debler, 1959, Stratified flow into a line sink, J. Eng. Mech. Div., ASCE 3, 51--65
  • D. E. Farrow and G. C. Hocking, 2006, A numerical model for withdrawal from a two layer fluid, J. Fluid Mech. 549, 141--157. doi:10.1017/S0022112005007561
  • L. K. Forbes and G. C. Hocking, 1990, Flow caused by a point sink in a fluid having a free surface, J. Austral. Math. Soc. Ser. B 32, 233--252. doi:10.1017/S0334270000008465
  • L. K. Forbes, G. C. Hocking and G. A. Chandler, 1996, A note on withdrawal through a point sink in fluid of finite depth, J. Austral. Math. Soc. Ser. B 37, 406--416. doi:10.1017/S0334270000008961
  • L. K. Forbes and G. C. Hocking, 1998, Withdrawal from a two-layer inviscid fluid in a duct, J. Fluid Mech. 361, 275--296. doi:10.1017/S0334270000010742
  • L. K. Forbes and G. C. Hocking, 2003, On the computation of steady axi-symmetric withdrawal from a two-layer fluid, Computers and Fluids, 32, 385--401. doi:10.1017/S0022112098008805
  • L. K. Forbes, G. C. Hocking and T. E. Stokes, 2008, On starting conditions for a submerged sink in a fluid, J. Eng. Math., 61, 55--68. doi:10.1007/s10665-007-9174-2
  • I. S. Gradshteyn and I. W. Ryzhik, Table of integrals series and products, Academic Press, New York and London, 1965.
  • G. Hocking, 1985, Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom, J. Aust. Math Soc. Ser. B, 26, 470--486. doi:10.1017/S0334270000004665
  • G. Hocking, 1991, Withdrawal from two-layer fluid through line sink, J. Hyd. Engng., ASCE, 117(6), 800--805. doi:10.1061/(ASCE)0733-9429(1991)117:6(800)
  • G. Hocking, 1991, Critical withdrawal from a two-layer fluid through a line sink, J. Eng. Math., 25, 1--11. doi:10.1007/BF00036598
  • G. Hocking, 1995, Supercritical withdrawal from a two-layer fluid through a line sink, J. Fluid Mech., 297, 37--47. doi:10.1017/S022112095002990
  • G. C. Hocking and L. K. Forbes, 2001, Supercritical withdrawal from a two-layer fluid through a line sink if the lower layer is of finite depth, J. Fluid Mech. 428, 333--348. doi:10.1017/S0022112000002780
  • G. C. Hocking, J-M. Vanden Broeck and L. K. Forbes, 2002, Withdrawal from a fluid of finite depth through a point sink, ANZIAM J., 44, 181--191. doi:10.1017/S1446181100013882
  • J. Imberger and J. C. Patterson, 1990, Physical Limnology, Adv. in Appl. Mech., 27, 303--475
  • H. Lamb, Hydrodynamics, Cambridge Univ. Press, New York, 6th ed. 1993
  • T. Miloh and P. A. Tyvand, 1993, Nonlinear transient free-surface flow and dip formation due to a point sink, Phys. Fluids A 5 (6), 1368--1375. doi:10.1063/1.858572
  • C. Sautreaux, 1901, Mouvement d'un liquide parfait soumis a lapesanteur. De termination des lignes de courant, J. Math. Pures Appl. 7 (5), 125--159.
  • T. E. Stokes, G. C. Hocking and L. K. Forbes, 2003, Unsteady free-surface flow induced by a line sink, J. Eng. Maths, 47, 137--160. doi:10.1023/A:1025892915279
  • T. E. Stokes, G. C. Hocking and L. K. Forbes, 2005, Unsteady flow induced by a withdrawal point beneath a free surface, ANZIAM J., 47, 185--202. doi:10.1017/S1446181100009986
  • T. E. Stokes, G. C. Hocking and L. K. Forbes, 2008, Unsteady free surface flow induced by a line sink in a fluid of finite depth, Computers and Fluids, 37, 236--249. doi:10.1016/j.compfluid.2007.06.002
  • E. O. Tuck, and J-M. Vanden Broeck, 1984, A cusp-like free-surface flow due to a submerged source or sink, J. Aust. Math Soc. Ser. B, 25, 443--450. doi:10.1017/S0334270000004197
  • P. A. Tyvand, 1992, Unsteady free-surface flow due to a line source, Phys. Fluids A, 4 (4), 671--676. doi:10.1063/1.858285
  • J-M. Vanden Broeck and J. B. Keller, 1987, Free surface flow due to a sink, J. Fluid Mech., 175, 109--117. doi:10.1017/S022112087000314
  • I. R. Wood, 1968, Selective withdrawal from a stably stratified fluid, J. Fluid Mech., 32, 209--223. doi:10.1017/S022112068000686
  • M. Xue and D. K. P. Yue, 1998, Nonlinear free-surface flow due to an impulsively started submerged point sink, J. Fluid Mech., 364, 325--347. doi:10.1017/S022112098001335
  • C. S. Yih, Dynamics of nonhomogeneous fluids, Macmillan, New York, 1965.
  • Q-N. Zhou and W. P. Graebel, 1990, Axisymmetric draining of a cylindrical tank with a free surface, J. Fluid. Mech. 221, 511--532. doi:10.1017/S022112090003652

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v51i0.1717



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.