Dependent default and recovery: Markov chain Monte Carlo study of downturn Loss Given Default credit risk model

Pavel V Shevchenko, Xiaolin Luo

Abstract


There is empirical evidence that recovery rates tend to go down just when the number of defaults goes up in economic downturns. This has to be taken into account in estimation of the capital against credit risk required by Basel II to cover losses during the adverse economic downturns; the so-called ``downturn Loss Given Default" requirement. This article presents a methodology for estimation of the Loss Given Default credit risk model with the default and recovery dependent via the latent systematic risk factor using a Bayesian inference approach and Markov chain Monte Carlo method. This approach allows joint estimation of all model parameters and latent systematic factor, and all relevant uncertainties. For illustration, we fit the model using Moody's annual default and recovery rates for corporate bonds for the period 1982--2010.

References

Keywords


credit risk, Markov chain Monte Carlo, Bayesian inference

Full Text:

PDF BibTeX


DOI: http://dx.doi.org/10.21914/anziamj.v53i0.5080



Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.