Study on microbial depolymerization processes of xenobiotic polymers with mathematical modelling and numerical simulation

Authors

  • Masaji Watanabe
  • Fusako Kawai

DOI:

https://doi.org/10.21914/anziamj.v53i0.5107

Abstract

Microbial depolymerization processes of polyethylene glycol are studied using a model for general depolymerization processes. The model involves a degradation rate that is a product of a time factor and a molecular factor. An inverse problem is solved numerically to determine the time factor using weight distributions with respect to the molecular weight before and after cultivation of a microbial consortium. The time factor is the microbial population whose carbon source is the liberated monomers. An initial value problem is solved numerically to simulate the transition of the weight distribution and the microbial population. References
  • Manfred Denker and Wojbor A. Woyczynski. Introductory Statistics and Random Phenomena, Uncertainty, Complexity and Chaotic Behavior in Engineering and Science, with Mathematica Uncertain Virtual Worlds by Bernard Ycart. Birkhauser, Boston, 1998.
  • F. Kawai. Biodegradability and chemical structure of polyethers. Kobunshi Ronbunshu, 50(10):775--780, 1993. In Japanese.
  • F. Kawai. Breakdown of plastics and polymers by microorganisms. Advances in Biochemical Engineering/Biotechnology, 52:151--194, 1995.
  • F. Kawai. Microbial degradation of polyethers. Applied Microbiology and Biotechnology, 58:30--38, 2002. doi:10.1007/s00253-001-0850-2
  • F. Kawai, M. Watanabe, M. Shibata, S. Yokoyama, and Y. Sudate. Experimental analysis and numerical simulation for biodegradability of polyethylene. Polymer Degradation and Stability, 76:129--135, 2002. doi:10.1016/S0141-3910(02)00006-X
  • F. Kawai, M. Watanabe, M. Shibata, S. Yokoyama, Y. Sudate, and S. Hayashi. Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polymer Degradation and Stability, 86:105--114, 2004. doi:10.1016/j.polymdegradstab.2004.03.015
  • G. Madras and B. J. McCoy. Numerical and similarity solutions for reversible population balance equations with size-dependent rates. Journal of Colloid Interface Science, 246:356--365, 2002.
  • B. J. McCoy. Distribution kinetics for temperature-programmed pyrolysis. Ind. Eng. Chem. Res, 38:4531--4537, 1999.
  • B. J. McCoy. Polymer thermogravimetric analysis: effects of chain-end and reversible random scission. Chemical Engineering Science, 56:1525--1529, 2001.
  • B. J. McCoy and G. Madras. Evolution of similarity solutions for fragmentation and aggregation. Journal of Colloid Interface Science, 201:200--209, 1998.
  • B. J. McCoy and G. Madras. Discrete and continuous models for polymerization and depolymerization. Chemical Engineering Science, 56:2831--2836, 2001.
  • J. E. J. Staggs. A continuous model for vapourisation of linear polymers by random scission and recombination. Fire Safety Journal, 40:610--627, 2005. doi:10.1016/j.firesaf.2005.05.004
  • M. Watanabe and F. Kawai. Modeling biodegradation of polyethylene with memoryless behavior in metabolic consumption. In preparation.
  • M. Watanabe and F. Kawai. Numerical simulation of microbial depolymerization process of exogenous type. In Rob May and A. J. Roberts, editors, Proc. of 12th Computational Techniques and Applications Conference, CTAC-2004, Melbourne, Australia in September 2004, volume 46(E) of ANZIAM J., pages C1188--C1204, 2005. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1014
  • M. Watanabe and F. Kawai. Mathematical modelling and computational analysis for enzymatic degradation of xenobiotic polymers. Applied Mathematical Modelling, 30:1497--1514, 2006. doi:10.1016/j.apm.2005.12.011
  • M. Watanabe and F. Kawai. Mathematical study of the biodegradation of xenobiotic polymers with experimental data introduced into analysis. In Andrew Stacey, Bill Blyth, John Shepherd, and A. J. Roberts, editors, Proceedings of the 7th Biennial Engineering Mathematics and Applications Conference, EMAC-2005, Melbourne, volume 47 of ANZIAM J., pages C665--C681, 2007. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1069
  • M. Watanabe and F. Kawai. Mathematical analysis of microbial depolymerization processes of xenobiotic polymers. In Geoffry N. Mercer and A. J. Roberts, editors, Proceedings of the 14th Biennial Computational Techniques and Application Conference, CTAC2008, volume 50 of ANZIAM J., pages C930--C946, 2009. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1465
  • M. Watanabe and F. Kawai. Effects of microbial population in degradation process of xenobiotic polymers. In P. Howlett, M. Nelson, and A. J. Roberts, editors, Proceedings of the 9th Biennial Engineering Mathematics and Applications Conference, EMAC-2009, volume 51 of ANZIAM J., pages C682--C696, 2010. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2433
  • M. Watanabe and F. Kawai. Study on biodegradation of xenobiotic polymers with change of microbial population. In W. McLean and A. J. Roberts, editors, Proceedings of the 15th Biennial Computational Techniques and Applications Conference, CTAC-2010, volume 52 of ANZIAM J., pages C410--C429, 2011. http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3965
  • M. Watanabe, F. Kawai, M. Shibata, S. Yokoyama, and Y. Sudate. Computational method for analysis of polyethylene biodegradation. Journal of Computational and Applied Mathematics, 161(1):133--144, December 2003. doi:10.1016/S0377-0427(03)0051-X
  • Masaji Watanabe and Fusako Kawai. Numerical simulation for enzymatic degradation of poly(vinyl alcohol). Polymer Degradation and Stability, 81:393--399, 2003. doi:10.1016/S0141-3910(03)00122-8
  • Masaji Watanabe, Fusako Kawai, Sadao Tsuboi, Shogo Nakatsu, and Hitomi Ohara. Study on enzymatic hydrolysis of polylactic acid by endogenous depolymerization model. Macromolecular Theory and Simulations, 16:619--626, 2007. doi:10.1002/mats.200700015

Published

2012-06-13

Issue

Section

Proceedings Engineering Mathematics and Applications Conference