Shepherded solitons


  • Isaac Towers UNSW @ Canberra
  • Zlatko Jovanoski UNSW @ Canberra



solitons, nonlinear optics


We investigate the onset of vector solitons in a three level, cascade, atomic system. We present an existence curve in the model parameter space for bright vector solitons. Approximate analytical solutions are given and the stability of the solutions discussed. Numerical simulations confirm the analytical predictions. References
  • M. Segev. Optical spatial solitons. Optical and Quantum Electronics, 30, 1998, 503--533.
  • J. Li, J. Liu and X. Yang. Superluminal optical soliton via resonant tunneling in coupled quantum dots. Physica E, 40, 2008, 2916--2920. doi:10.1016/j.physe.2008.02.004
  • G. Huang, L. Deng and M. G. Payne. Dynamics of ultraslow optical solitons in a cold three-state atomic system. Phys. Rev. E, 72, 2005, 016617. doi:10.1103/PhysRevE.72.016617
  • N. A. Ansari, Z. Jovanoski, H. S. Sidhu and I. N. Towers. Non-linear interaction of two intense fields with a three-level atomic system. J. Nonlin. Opt. Phys. Mat., 15, 2006, 401--413. doi:10.1142/S0218863506003402
  • N. A. Ansari, I. N. Towers, Z. Jovanoski and H. S. Sidhu. A semi-classical approach to two-frequency solitons in a three-level cascade atomic system. Opt. Commun., 274, 2007, 66--73. doi:10.1016/j.optcom.2007.02.019
  • C. R. Menyuk, IEEE J. Quantum Electron., {QE-23}, 174 (1987).
  • Y. S. Kivshar and G. P. Agrawal. Optical Solitons: From fibers to photonic crystals, Chapter 9, San Diego: Academic Press, 2003.
  • N. N. Akhmediev and A. Ankiewicz. Solitons: Nonlinear pulses and beams, p.27, London : Chapman and Hall, 1997.
  • S. Flugge. Practical quantum mechanics, Vol. 1, pg. 94--100, Berlin; New York : Springer-Verlag, 1971.
  • A. W. Snyder and J. D. Love. Optical Waveguide Theory, pp. 264--8, London; New York : Chapman and Hall, 1983.
  • F. W. J. Olver. Introduction to Asymptotics and Special Functions, p.169, New York; London: Academic Press, 1974.
  • L. F. Shampine, P. H. Muir and H. Xu. A User-Friendly BVP solver. JNAIAM, 1, 2006, 201--17. muir/JNAIAM_Shampine_Muir_Xu2006.pdf
  • O. V. Sinkin, R. Holzlohner, J. Zweck and C. R. Menyuk. Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems. J. Lightw. Technol., 21, 2003, 61--8. doi:10.1109/JLT.2003.808628





Proceedings Engineering Mathematics and Applications Conference